Improved forecasting of thermospheric densities using multi-model ensembles
نویسندگان
چکیده
This paper presents the first known application of multi-model ensembles to the forecasting of the thermosphere. A multi-model ensemble (MME) is a method for combining different, independent models. The main advantage of using an MME is to reduce the effect of model errors and bias, since it is expected that the model errors will, at least partly, cancel. The MME, with its reduced uncertainties, can then be used as the initial conditions in a physics-based thermosphere model for forecasting. This should increase the forecast skill since a reduction in the errors of the initial conditions of a model generally increases model skill. In this paper the Thermosphere–Ionosphere Electrodynamic General Circulation Model (TIE-GCM), the US Naval Research Laboratory Mass Spectrometer and Incoherent Scatter radar Exosphere 2000 (NRLMSISE-00), and Global Ionosphere– Thermosphere Model (GITM) have been used to construct the MME. As well as comparisons between the MMEs and the “standard” runs of the model, the MME densities have been propagated forward in time using the TIE-GCM. It is shown that thermospheric forecasts of up to 6 h, using the MME, have a reduction in the root mean square error of greater than 60 %. The paper also highlights differences in model performance between times of solar minimum and maximum.
منابع مشابه
Probing upper thermospheric neutral densities at Mars using electron reflectometry
[1] We present a new technique for inferring neutral densities in the Martian upper atmosphere from atmospheric absorption of magnetically reflected solar wind electrons. Using electron loss cone measurements from the Magnetometer/Electron Reflectometer (MAG/ER) experiment on board Mars Global Surveyor (MGS), we derive upper thermospheric ( 160–230 km altitude) densities in the southern hemisph...
متن کاملFlood Forecasting Using Artificial Neural Networks: an Application of Multi-Model Data Fusion technique
Floods are among the natural disasters that cause human hardship and economic loss. Establishing a viable flood forecasting and warning system for communities at risk can mitigate these adverse effects. However, establishing an accurate flood forecasting system is still challenging due to the lack of knowledge about the effective variables in forecasting. The present study has indicated that th...
متن کاملMulti-model Ensembling of Probabilistic Streamflow Forecasts: Role of Predictor State Space in skill evaluation
Seasonal streamflow forecasts contingent on climate information are essential for shortterm planning and for setting up contingency measures during extreme years. Recent research shows that operational climate forecasts obtained by combining different General Circulation Models (GCM) have improved predictability/skill in comparison to the predictability from single GCMs [Rajagopalan et al., 200...
متن کاملThe Stock Returns Volatility based on the GARCH (1,1) Model: The Superiority of the Truncated Standard Normal Distribution in Forecasting Volatility
I n this paper, we specify that the GARCH(1,1) model has strong forecasting volatility and its usage under the truncated standard normal distribution (TSND) is more suitable than when it is under the normal and student-t distributions. On the contrary, no comparison was tried between the forecasting performance of volatility of the daily return series using the multi-step ahead forec...
متن کاملForecast of climatologically events using improved grey model (Case Study: Qazvin Province Climatology)
The theory of grey system is used when sufficient information of the community under study is not in hand. The grey forecast model is proper when the information variety is fix and certain. Grey model can apply some additional computations to improve forecasting activities when data is insufficient. Through using improved grey model, the assessment error decreases significantly. This study made...
متن کامل